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1. Introduction

Topological strings, which were introduced by Witten [1, 2] more that fifteen years ago,

have led, not only to very interesting mathematical results, but also to important physical

applications beyond those that originally motivated their construction. In addition, they

can be considered as “toy models” helping us to understand some basic properties of

physical string theory.

In fact, it was Witten [3] himself who, trying to face up the problem of background-

dependence in string theory, found a very interesting result: the background-dependent

partition function of closed B-model topological strings can be seen as a background-

dependent representation of a background-independent state in a quantum mechanical

system whose phase space is H3(M, R), being M the Calabi-Yau threefold target space.

Another important lesson we have learned about topological strings is that there is

a large N topological string duality [4, 5], associated with a kind of geometric transition,

relating different open and closed string backgrounds. To be more precise, let us consider

the well-known proposal of Dijkgraaf and Vafa [6]. The starting point is the resolved local

CY threefold Mres encoded by the complex curve

y2 − W ′(x)2 = 0 (x, y) ∈ C
2 (1.1)
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where W ′(x) =
∏d

a=1(x−xa) is a polynomial of degree d. The authors consider that there

are Na B-model branes wrapping the CP 1
a obtained after blowing up the x = xa singularity.

In this case, the open string field theory governing the dynamics of the open topological

strings attached to the branes reduces to the holomorphic matrix model

ZMM(gs, N) =
1

vol(U(N))

∫
DM exp

[
− 1

gs
Tr W (M)

]
(1.2)

where N =
∑d

a=1 Na and gs is the topological string coupling. More precisely, the open

topological string partition function corresponds to the perturbative ’t Hooft expansion of

this matrix model around a vacuum at which there are Na eigenvalues surrounding the

critical point xa,

Zopen(gs, Na) = exp




∞∑

g=0

g2g−2
s

∞∑

h1,...,hn=1

Fg,h1,h2,...,hn
th1

1 th2

2 . . . thn
n



 (1.3)

where ta = gsNa are the ’t Hooft couplings. Dijkgraaf and Vafa conjectured that the ’t

Hooft resummation of the free energies

F open
g (t) =

∞∑

h1,...,hn=1

Fg,h1,h2,...,hn
th1

1 th2

2 . . . thn
n (1.4)

computes the closed topological string free energies F closed
g (t) on the background Mdef , the

deformed CY associated with the classical spectral curve of the matrix model. That is,

F open
g (t) = F closed

g (t) (1.5)

where the quantities tas in the closed side are identified with the complex structure defor-

mation parameters. This conjecture has been tested in refs. [7 – 9].

At this point the first naive problem comes by noticing that the F open
g (t) are naturally

holomorphic functions, whereas F closed
g (t, t̄) have a non-holomorphic dependence given by

the holomorphic anomaly [10, 11]. Therefore, a natural question is what happens in eq. (1.5)

with the non-holomorphic dependence of F closed
g . The answer is that the quantity appearing

on the right hand is actually the holomorphic limit of F closed
g , that is, the limit at which we

send t̄ to infinity while keeping t finite. In a recent paper, Eynard, Mariño and Orantin [12]

face up this topic by showing that there is a procedure to obtain non-holomorphic free

energies F open
g (t, t̄) from the matrix model1 that satisfy the holomorphic anomaly equations.

In this paper we study the holomorphic anomaly problem concerning eq. (1.5) from

the point of view of the wave-function interpretation of the topological string partition

function. In section 2 we briefly review the real and Kähler polarizations in the quantization

of H3(M, R). In section 3 we study in detail the process to go both from Kähler to real

polarization and the inverse one. The central point of this section is the proof, given

1In fact, from any algebraic curve Σ : H(x, y) = 0, without caring whether it is the spectral curve of a

matrix model or not.
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recently by Schwarz and Tang [13], that the closed topological string wave-function in

real polarization is equal to the holomorphic limit of Zclosed. In section 4 we re-analyse

the results of ref. [12] in terms of the H3-quantization formalism. This lets us formulate

the Dijkgraaf-Vafa conjecture in a precise background-independent way. Conclusions and

comments on the relation to some other topics, like supersymmetric black holes, are given

in section 5.

2. Wavefunction interpretation of closed topological strings

This review section is based on [3, 14 – 19]. Let us consider a 7d field theory for a real

3-form C with action

S[C] =
1

2

∫

M×R

C ∧ d7dC =

∫

M×R

[
1

2
γ(−γ̇ + dω) +

1

2
ω ∧ dγ

]
∧ dt′ (2.1)

where we have the following 6d decomposition

C = γ + ω ∧ dt′ (2.2)

being γ and ω real 3 and 2-forms on M . For the moment we will consider M to be a compact

Calabi-Yau threefold. This is a singular system with conjugate momenta πγ = −γ/2 and

πω = 0. Therefore, the Hamiltonian description is that of a constrained system with the

constraints

Φ(1)
γ ≡ πγ +

1

2
γ = 0 (2.3)

Φ(1)
ω ≡ πω = 0 (2.4)

Φ(2)
ω ≡ dγ = 0 (2.5)

The first two constraints are primary constraints, whereas the last one is a secondary

constraint obtained from the second one. Both the second and the third one are first class

constraints, and one has to take into account this fact in order to quantize the theory.

Thus, the wave functions will not depend on ω and its dependence on γ will be such that

d̂γ|ψ〉 = 0 (2.6)

On the other hand, eq. (2.3) is a set of second class constraints implying that one has to

work with Dirac brackets instead of Poisson brackets. From all these constraints one finds

that H3(M, R) is the physical phase space of the system.

2.1 Quantization of H3(CY3, R) in real polarization

By choosing a symplectic basis (αI , β
J) of H3(M), with I, J = 0, 1, . . . , h2,1, one can work

with real polarization coordinates

γ = pIαI + qIβ
I ∈ H3(M, R) (2.7)

From the Dirac brackets one obtains the quantization rule

[qI , p
J ] = i~δJ

I (2.8)
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that is, they behave as ordinary coordinate and momentum operators. Under a symplectic

transformation they transform as2

(
p̃

q̃

)
=

(
D C
B A

)(
p

q

)
(2.9)

with DA− CB = I. This is a canonical transformation, with generating function

S(p, p̃) = −1

2
pC−1Dp + pC−1p̃ − 1

2
p̃AC−1p̃ (2.10)

Therefore, wavefunctions on this real polarization 〈ψ|p〉 will not be symplectic invariant,

but will have this generalized Fourier transformation

〈ψ|p̃〉 =
1

(2π~)
h2,1+1

2

∫
dp〈ψ|p〉 exp

[
− i

~
S(p, p̃)

]
(2.11)

In the WKB approximation we can write the wavefunction as a series expansion

〈ψ|p〉 = exp

∞∑

g=0

~
g−1ϕg(p) (2.12)

Expanding into the leading order saddle point pcl(p̃), which is the solution of

∂ϕ0(p)

∂p
− i

∂S(p, p̃)

p
= 0 (2.13)

the integral expression (2.11) reduces to

ϕ̃g(p̃) = ϕ(pcl) + Γg

[
∆IJ , ∂I1,...,Inϕr<g(pcl)

]
(2.14)

where Γg are given by Feynman diagrams [18] with inverse propagator

∆IJ = i
∂2ϕ0

∂pI∂pJ
(pcl) − (C−1D)IJ (2.15)

and vertices ∂I1,...,Inϕr<g(pcl).

2.2 Quantization of H3(CY3, R) in Kähler polarization

On the other hand, we can work in a symplectic invariant way by choosing a complex

structure on M . This induces a polarization on H3, from which we define the Kähler

coordinates λ−1 and xi, i = 1, . . . , h2,1

γ = λ−1Ω + xiDiΩ + cc (2.16)

In these coordinates the commutators coming from the Dirac brackets are

[
λ−1, λ̄−1

]
= −~eK (2.17)

[
xi, x̄j̄

]
= ~eKGij̄

2Of course, a subgroup of these transformations is the modular group Γ, but here we would like to stress

that one can consider the larger group Sp(2h2,1 + 2, R).
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where K is the Kähler potential of the moduli space of complex structures on M and Gij̄

is the inverse metric. Notice that λ̄−1 and xi act as annihilation operators. But in order

to establish the connection with topological strings it is necessary to work formally with

the Hilbert space spanned by the eigenstates |λ−1, x〉 of λ̂−1 and x̂i

|x, λ−1〉 = exp

[
−1

~
e−K ˆ̄λ

−1
λ−1 +

1

~
e−Kxi ˆ̄x

j̄
Gij̄

]
|0, 0〉 (2.18)

I =

∫
dµx,λ−1 exp

[
+

1

~
e−K λ̄−1λ−1− 1

~
e−Kxix̄j̄Gij̄

]
|x, λ−1〉〈x̄, λ̄−1| (2.19)

〈x̄′, λ̄−1′|x, λ−1〉
〈0̄, 0̄|0, 0〉 = exp

[
−1

~
e−K λ̄−1′λ−1 +

1

~
e−Kxix̄j̄′Gij̄

]
(2.20)

where dµx,λ−1 = |G|1/2 exp [−(h2,1 + 1)K/2] dhxdhx̄dλ−1dλ̄−1.

Another way of describing these states is by using big phase space variables 1
2xI =

λ−1XI + xiDiX
I . That is,

pI = RexI (2.21)

qI = Re
[
τIJ(X)xJ

]
(2.22)

Notice that one has to choose a particular symplectic homology basis in order to work with

big phase space variables. The quantization rule in these variables is

[
xI , x̄J

]
= 2~ [Imτ(X)]−1IJ (2.23)

I will use both notations to denote the same state

|xI〉 = |xi, λ−1〉 (2.24)

Since

〈p|x〉 =
√

|Imτ | exp

[
− i

2~
pτ̄p +

1

~
pImτx − 1

4~
xImτx

]
(2.25)

the relation between wavefunctions in real and Kähler polarizations is

〈ψ|x〉 =
√

|Imτ |
∫

dp〈ψ|p〉 exp

[
− i

~
Ŝ(p, x)

]
(2.26)

where

Ŝ(p, x) =
1

2
pτ̄p + ipImτx − i

4
xImτx (2.27)

is the generating function of the (background dependent) canonical linear transformation

going from real to Kähler polarization.

From the point of view of the real polarization, the eigenstates |xi, λ−1〉X,X̄ are actually

squeezed states |xi
p,q;X,X̄

, λ−1
p,q;X,X̄

〉X,X̄ centered around the phase space point (p, q) with

width, measuring the quantum resolution, and squeezing parameters given by τIJ(X). This

is another way to see that these states will change under variations of the base complex

structure. It has been shown [3, 16] that the variation of these states is the same as the

one of the topological string generating function of correlators as given by the holomorphic
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anomaly. This suggests to define a state |ψclosed〉 such that its squeezed state representation

is equal to the topological string generating function. More precisely

〈ψclosed|λ−1, x〉X,X̄ = ef1(X)ψgen

(√
~λ, λx;X, X̄

)
(2.28)

where f1 is the purely holomorphic part of the genus one free energy. Moreover, it has

also been shown that |ψclosed〉 is a physical state of the system [15] , that is, one that

satisfies (2.6).

3. Closed topological string state in real polarization

In this section we address the problem of computing the wavefunction corresponding to

the state |ψclosed〉 in real polarization. This computation was done in an elegant way

by Schwarz and Tang [13] by introducing, as an auxiliary tool, a hybrid polarization,

which mixes real and Kähler bases. We classify and describe the four possibilities of

doing this mix in the next subsection. In this paper we use the name “holomorphic” or

“anti-holomorphic” for these hybrid polarizations, depending on whether its background

dependence is holomorphic or anti-holomorphic.

3.1 (Anti-)Holomorphic polarizations

3.1.1 (Ω, β)-holomorphic polarization

The polarization we are interested in is [13]

γ =
1

2
xI

hol∂IΩ + qholIβ
I (3.1)

It is straightforward to obtain that

xI
hol = 2pI (3.2)

qholI = −iImτIJ x̄J (3.3)

and, therefore [
qholI , x

J
hol

]
= 2i~δJ

I (3.4)

From (3.2) we trivially have that |p〉 are the eigenstates of x̂I
hol. Therefore wavefunctions in

the xhol-representation are nothing but 〈ψ|p〉. Nevertheless, we shall use |xhol〉 since they

have a different natural normalization factor. By writing

|xhol〉 = exp

[
i

2~
xholq̂hol

]
|xhol = 0〉 (3.5)

we find

|xhol〉 = exp

[
− i

2~
pτp

]
|p〉 (3.6)

The base point dependence is

∂

∂XJ
|xhol〉 = − i

8~
CIJKxI

holx
K
hol|xhol〉 (3.7)

∂

∂X̄J
|xhol〉 = 0 (3.8)
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We can also introduce the (λ, xi) notation

γ = λ−1
holΩ + xi

holDiΩ + qholIβ
I (3.9)

where
xI

hol

2
= λ−1

holX
I + xi

holDiX
I (3.10)

The base point dependence is then given by

∂

∂ti
|λ−1

hol, x
i
hol〉 =

[
λ−1

hol

∂

∂xi
hol

− 1

2~
Cijkx

j
holx

k
hol

]
|λ−1

hol, x
i
hol〉 (3.11)

∂

∂t̄ī
|λ−1

hol, x
i
hol〉 = 0 (3.12)

3.1.2 Other (anti-)holomorphic polarizations

We can also find in the literature the antiholomorphic polarization [20]

γ =
1

2
yI ∂̄IΩ̄ + sIβ

I (3.13)

for which

yI = 2pI (3.14)

sI = iImτIJxJ (3.15)

and, therefore [
sI , y

J
]

= 2i~δJ
I (3.16)

Now |p〉 are the eigenstates of ŷI , and the eigenstates of ŝI are |x〉, so this formalism

contains both the real and the Kähler polarizations. With the natural normalization factor

we have

|s〉 =
1√
|Imτ |

exp

[
1

4~
xImτx

]
|x〉 (3.17)

The base point dependence is

∂

∂XJ
|s〉 = 0 (3.18)

∂

∂X̄J
|s〉 = − i

2~
C̄IJK p̂I p̂K |s〉 (3.19)

From (3.17) and (2.28) one can find that

〈ψclosed|s〉X̄ = exp



 i

4~
xτ̄x − f̄1(X̄) +

∞∑

g=0

~
g−1F closed(

x

2
, X̄)



 (3.20)

Therefore, the reason why 〈ψclosed|s〉X̄ has only an antiholomorphic background depen-

dence is because the holomorphic dependence has been absorbed into the wavefunction

dependence.
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The other two possibilities are

γ =
1

2
wI ∂̄IΩ̄ + pI

holαI (3.21)

for which

wI = 2τ̄−1JIqI (3.22)

phol = −iτ̄−1(Imτ)−1x (3.23)

and

γ =
1

2
uI∂IΩ + rIαI (3.24)

for which

u = 2τ−1q (3.25)

r = iτ−1(Imτ)−1x̄ (3.26)

3.2 Loss of background dependence: the z̄ → ∞ limit

The relation between holomorphic (3.1) and Kähler polarization bases is given by

∂̄IΩ̄ = ∂IΩ − 2iImτIJβJ (3.27)

Thus, both bases will be the same in the limit where

i

2

[
(Imτ)−1

]IJ
∂JΩ (3.28)

is small. By doing the wedge product with the elements of the symplectic basis (βI , αJ )

one obtains the conditions

i
2(Imτ)−1 ≃ 0 (3.29)

i
2(Imτ)−1τ ≃ 0 (3.30)

that is,

τIJ + τ̄IJ ≃ −τIJ + τ̄IJ → ±∞ (3.31)

Of course, this limit cannot be satisfied if one keeps t̄ to be the complex conjugate of t.

The way to satisfy (3.31) is by sending

z → s (3.32)

z̄ → νs̄ (3.33)

with ν → ∞ and s a complex constant. (z, z̄) are the coordinates on the complex structure

moduli space that give the Kähler parameters. In other words, z is kept fixed whereas z̄ is

sent deep inside the Kähler cone. In this limit

∂̄IΩ̄ → −2iImτIJβJ (3.34)

– 8 –
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and the Kähler operators go to

xI → xI
hol (3.35)

−iImτIJ x̄J → qholI (3.36)

States |xI〉 and |xI
hol〉 will be proportional. With the normalizations we have chosen the

proportionality constant is indeed one

|xI〉X,X̄∞

= |xI
hol〉X (3.37)

From (3.37) and (2.28) we have

〈ψclosed|λ−1
hol, x

i
hol〉X = (3.38)

= exp

[
f1(X) +

∞∑

g=0

(λhol

√
~)2g−2

∞∑

n=0

1

n!
Cg

i1...in
(X, X̄∞)(λholx

i1
hol) . . . (λholx

in
hol)

]

Notice that the last expression does not contain the genus 0 free energy. This is due to

the selection rules of the topological string correlators. Since in the holomorphic limit

∂iK ∝ 1
ν → 0, the relation between Kähler and big phase space variables is simpler

1

2
x0

hol = λ−1
holX

0 (3.39)

1

2
xI=i

hol = X0
(
λ−1

holt
i + xi

)
(3.40)

where we have chosen coordinates ti = Xi

X0 . Eq. (3.38) becomes

〈ψclosed|λ−1
hol, x

i
hol〉X = exp

[
f1(X) +

∞∑

g=0

(λhol

√
~)2g−2F closed

g

(xhol

2
, X̄∞

)
−

−(λhol

√
~)−2F closed

0 (X) − (λhol

√
~)−2(λholx

i
hol)∂iF

closed
0 (X) −

. − 1

2
(λhol

√
~)−2(λholx

i
hol)(λholx

j
hol)∂i∂jF

closed
0 (X)

]
(3.41)

On the other hand we have

− i

2~

xI
hol

2
τIJ

xI
hol

2
= −(λhol

√
~)−2F closed

0 (X) − (λhol

√
~)−2(λholx

i
hol)∂iF

closed
0 (X) −

−1

2
(λhol

√
~)−2(λholx

i
hol)(λholx

j
hol)∂i∂jF

closed
0 (X) (3.42)

Combining eq. (3.6), (3.41) and (3.42) we obtain a simple expression for the closed topo-

logical string state in real polarization

〈ψclosed|p〉 = exp




∞∑

g=0

~
g−1F closed

g (p, X̄∞)



 (3.43)

In conclusion, we can see that, in the process in order to go from Kähler to real polarization,

the background dependence is lost by

• sending the antiholomorphic dependence to infinity and by

• treating the holomorphic dependence as the functional dependence ψ(p) of the wave-

function.
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3.3 Loss of symplectic dependence

One way to see what happens in the inverse process, i.e. to go from real to Kähler polariza-

tion, is to use the Feynman diagrams of ref. [18]. Let us consider for simplicity eq. (2.26)

in the particular case xI = 2λ−1XI . This is the particular background point at which the

“attractor equations”

pI = Re
[
2λ−1XI

]
(3.44)

qI = Re
[
2λ−1τIJXJ

]

hold. The pair (p, q) is the phase space point at which the squeezed states |x〉X,X̄ are

centered. Therefore we are studying

〈ψ|x = 2λ−1X〉X,X̄ = exp

[
f1(X) +

∞∑

g=2

(λ
√

~)2g−2F closed
g (X, X̄)

]
(3.45)

in terms of its real polarization counterpart. Expanding the integral of eq. (2.26) into the

leading order saddle point

pcl = λ−1X (3.46)

one finds

〈ψ|x = 2λ−1X〉X,X̄ = exp

[
f1(X) +

∞∑

g=2

(λ
√

~)2g−2
(
F closed

g (X, X̄∞) (3.47)

+Γg((−2iImτ)−1, ∂I1 . . . ∂InF closed
r<g (X, X̄∞))

)]

where Γg are the same Feynman diagrams that appear in eq. (2.14), but with a different

propagator

∆̆IK(X) = −2iImτ(X) (3.48)

Notice that there is not ~
−1 term into eq. (3.47). This is because the leading order saddle

point evaluation of the integral (2.26) is equal to 1. In addition, the 1-loop term

Γ1 = −1

2
log |Imτ | (3.49)

cancels with the |Imτ | that is in front of the integral (2.26). From eq. (3.47) the conclusion

is that the non-holomorphic dependence of 〈ψclosed|X〉X,X̄ comes entirely from the prop-

agators (3.48) of Feynman diagrams. On the other hand, F closed
g (X, X̄∞) transforms in

a specific way under symplectic transformations (2.14), whereas 〈ψclosed|X〉X,X̄ is clearly,

up to a normalization constant, symplectic invariant. This is due to the fact that the

propagator transforms as

(−2iImτ)−1 → (Cτ + D)IK(−2iImτ)−1KL(Cτ + D)JL − (Cτ + D)JLCIL (3.50)

in such a way that this quasi-modular transformation cancels the transformations of

F closed
g (X, X̄∞).
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4. Matrix model partition function as a real polarization wavefunction

Everything that has been said until now for the quantization of H3(M, R) can be extrapo-

lated, up to some subtleties, to the case where M is a local Calabi-Yau. We will center on

the concrete class of local CY backgrounds of ref. [6]

uv = H(x, y); H(x, y) = y2 − (W ′(x))2 + f(x) (4.1)

where f(x) is a polynomial of degree d − 1. Their coefficients parametrize the complex

structure deformations over the singular manifold. We call this deformed manifold Mdef .

Its geometry can be seen as a C∗ fibration over the xy-plane. 3-cycles on Mdef descend to

1-cycles on the hyperelliptic surface Σ : H(x, y) = 0, and periods of the holomorphic 3-form

Ω on Mdef descend to the periods of a meromorphic 1-form on Σ. To simplify notation we

will use the same letters for 3-cycles and 1-cycles, and we will also call the meromorphic

1-form Ω.

For these manifolds, we can consider 2d − 2 compact 1-cycles (Ai, Bj), with i =

1, 2, . . . , d − 1, forming a symplectic basis. But, in addition, there are cycles Â whose

homology dual cycles B̂ are non-compact. This is the reason why, whereas the quantities

Xi =

∫

Ai

Ω (4.2)

are complex structure moduli giving rise together with

Fi =

∫

Bi

Ω (4.3)

to the usual rigid special geometry relations, the quantities

X̂ =

∫

Â
Ω (4.4)

are considered as parameters on the model, not moduli. The useful basis for us is the one

of ref. [21], at which there is only one non-compact cycle B̂.

For the moment, we are going to consider the quantization of the component of γ

that is a linear combination of the forms (βi, αj), which are the Poincar dual of (Ai, Bj).

Everything works as explained in previous sections, but instead of having I = 0, 1, . . . , h2,1,

we have i = 1, . . . , d − 1. The phase space coordinates (pi, qj) are promoted to operators,

whereas p̂ is treated as a given parameter. In particular, eq. (2.14) still works, but refers

to elements of the symplectic group Sp(2d − 2, R).

On the other hand, in ref. [22] it is shown how to construct recursively a set of scalar

functions FH
g (Xi) from the curve Σ. In the case we are considering, they are precisely the

free energies of the matrix model (1.2), whose classical spectral curve is Σ. The procedure

of ref. [22] uses a modified Bergmann kernel to compute modified functions FH
g . This

modified Bergmann kernel depends on a symmetric matrix κ in such a way that

FH
g = FH

g |κ=0 (4.5)
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ref. [12] uses the variations
∂FH

g

∂κ , computed in [22], for the particular case

κij = (−2iImτ)−1ij = ∆̆ij (4.6)

and shows that

FH
g (Xi) → FH

g (Xi, X̄ ī) = FH
g (Xi) + Γg

[
κij , ∂I1,...,ImFH

r<g(X
i)

]
(4.7)

or, analogously, that the new FH
g verify the holomorphic anomaly equations. It was also

known from [22] that with this choice of κ the new FH
g are modular invariant because the

Bergmann kernel is. From the point of view of the quantization of H3(M, R) this is nothing

but the transformation (3.47). Notice that the choice of κ is the one corresponding to the

canonical change of variables going from real to Kähler polarization.

From the previous discussion, it is clear that, by doing the same analysis for the case

we consider a general modular transformation (2.9), the unmodified quantities FH
g change

as

FH
g (Xi) → FH

g (Xi
cl) + Γg

[
∆ij, ∂I1,...,ImFH

r<g(X
i
cl)

]
(4.8)

We can see it by noticing that the modular transformed FH
g are equal to FH

g |κ=∆. Thus,

the quantities FH
g transform in the same way as ϕg (see eq. (2.14)). We saw in section

2 that they are the only conditions the functions ϕg must satisfy in order to represent a

background independent and symplectic-modular invariant state |ψ〉 belonging to the naive

Hilbert space of the quantization of H3(M, R). For this reason, we propose to associate to

any given algebraic curve H(x, y) = 0 a state |ψH〉 such that

〈ψH|p〉 = exp

∞∑

g=0

~
g−1FH

g (p) (4.9)

is its momentum representation. In the case we are considering, where Σ is the spectral

curve of a matrix model, we denote this state by |ψopen〉.
In addition, the conclusion of [12] is that the quantities FH

g (X, X̄) are equal to

F closed
g (X, X̄) up to a holomorphic modular invariant quantity. Therefore, in order to

prove the Dijkgraaf-Vafa conjecture the thing that remains to show is that this holomor-

phic modular invariant quantities are equal to zero at all genera. This should be done, at

least in principle, by impossing the appropiate boundary behaviour at the conifold point

of the complex structure moduli space. Now, with the definition (4.9) and the results of

section 3, this is the same as saying that

|ψH〉 = |ψclosed〉 (4.10)

This is not a crazy statement because both states are defined as a topological property of

the surface H(x, y) = 0. Notice however, that, although they are topological invariants of

Mdef , their origin is much different:

• |ψclosed〉 comes from closed topological strings on Mdef with a specific complex struc-

ture (Ω, Ω̄). This is the reason why we can say that the natural polarization associated

with closed strings on Mdef is |λ−1, xi〉Ω,Ω̄.
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• |ψH〉 comes from the invariant functions FH
g (p; (A,B)), which can be obtained from

Mdef by choosing a symplectic basis (A,B). These functions do not depend on the

complex structure of Mdef . This is the reason why we can say that the natural

polarization associated with these invariants is |p〉(A,B).

Notice also that, in particular, the conjecture (4.10) implies that |ψH〉 is actually a physical

state, i.e. one that satisfies the condition (2.6).

On the other hand, in the open string side we do not have the freedom to choose a

symplectic structure. In this context, this can be understood from the fact that free energies

F open are equal to FH at a fixed symplectic basis where the A-periods are proportional to

the filling fractions ∫

Ai
o

Ω ∝ νi (4.11)

Thus, the natural polarization associated with open strings on Mres is |p〉(Ao,Bo), and the

precise definition of |ψopen〉 is

〈ψopen|p〉(Ao,Bo) = exp

∞∑

g=0

~
g−1F open

g (p) (4.12)

5. Conclusions and discussion

We have seen that we can associate, both to the open string background and to the closed

one, states in the quantization of H3(Mdef , R) in such a way that the Dijkgraaf-Vafa con-

jecture reads

|ψopen〉 = |ψclosed〉 (5.1)

If the conjecture is true, we see that open and closed string amplitudes are nothing but

different representations of the same background independent state. This is the reason why

the geometric transition process that goes from open to close string backgrounds is, from

this point of view, a change from real to Kähler polarization. On the left-hand side (open

strings) wavefunctions are holomorphic, but change under modular transformations. On

the right-hand side (closed strings) they have a non-holomorphic dependence, but they are

modular invariant. In order to see that this is the natural way to look at this brane/flux

geometric transition, we have pointed out that

• In the closed-string side of the duality we have a target space geometry with back-

ground complex structure (Ω, Ω̄) but without any privileged symplectic basis. The

symplectic basis is introduced only through the definition of the periods Xi.

• On the other hand, in the open string side, the resolved geometry does not have the

complex structure moduli Xi, which have been replaced by branes. We have lost

that background dependence. Nevertheless, at this open string side, the information

about Xi is encoded into the filling fractions, so there is a privileged symplectic basis

given by the numbers of branes at the different CP 1s of the geometry: we are in a

real polarization description.
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In addition, we would like to point out that proposals (4.9) and (4.10) can be extended

naturally to include the non-compact sector, in such a way that i = 1, 2, . . . , d, . . . by

considering the non-compact cycle as the limit of a compact one, and by considering also

the dependence of the matrix model free energies on the ’t Hooft parameter associated with

the total size of the matrix.3 Nevertheless, it would be pleasant to formalize the whole

analysis by working directly with local CY background without taking any limit.

We would also like to indicate that all the analysis that was done in section 4 concerning

formulas from (4.5) to (4.10) can be extrapolated to any of the algebraic curves considered

in [22] and, in particular, to the backgrounds of ref. [23]. In fact the latter backgrounds

can also be associated with some limit of the geometric transitions of ref. [24].4 Thus it

would be very interesting to extend the present work to include these more complicated

open/closed string dualities.

We expect this new way of looking at the geometric transitions to give new insight into

the study of supersymmetric black holes in string theory. Macroscopic entropy of the so

called Calabi-Yau black holes is related to closed topological string free energies [25, 26] and,

therefore, to |ψclosed〉. In fact, in ref. [19] is shown that this macroscopic entropy is related

to the mixed Husimi-antiHusimi quantum distribution function associated with |ψclosed〉.
In this formalism the attractor equations (3.44) going from Kähler to real polarization play

a special role. The pairs (p, q) are, in this case, the charges of the black hole. Therefore

they are integer variables. This fact, although usually ignored in the literature about the

quantization of H3, is naturally encoded into the matrix model formalism: the quantities pi

represent the number of matrix eigenvalues located at the critical points of the potential W .

The fact that pi are integer is also included into the quantization of the curve H(x, y) = 0

through the relation

[x, iy] = i~ (5.2)

More precisely, pi ∈ Z is the Bohr-Sommerfeld quantization rule associated with the closed

phase space curve surrounding the critical point where the eigenvalues are located [28]. It is

also known that the relation (5.2) is responsible for the wavefunction behavior of the open

topological string partition function associated with non-compact branes [27, 29]. However

in this work we have studied only the case of compact branes, for which the wavefunction

behavior is given by (2.8). It would be interesting to study the interplay between both

quantizations.

On the other hand, it is precisely the real polarization description the one that is

related to Gopakumar-Vafa invariants and that appears in the recent microscopic deriva-

tions [30 – 33] of the Ooguri-Strominger-Vafa conjecture [25]. In these derivations the quan-

tum corrected entropy appears as the Wigner function associated with |ψclosed〉. The usual

case considered in the literature is the one where the complex structure attractor point is

located in the region deep inside the Kähler cone (X, X̄) ≃ (X∞, X̄∞). From conclusions

3In fact, in ref. [21] it is shown how to work with cut-off dependent quantities associated with the

non-compact cycle B̂, and how the special geometry relations are modified when one includes B̂ in the

analysis.
4I would like to thank M. Mariño for pointing this fact out to me.
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of section 3, it is clear that at this region one is not able to distinguish between real and

Kähler polarizations and, in fact, it is shown in ref. [19] that in this region the macroscopic

entropy of the black hole does not differ significantly from a Wigner function. But, clearly,

if one wants to work with black holes that are outside the region (X, X̄) ≃ (X∞, X̄∞) one

has to take into account the change of polarization needed to compare microscopic and

macroscopic entropies.
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